幽灵资源网 Design By www.bzswh.com

我们一般通过表达式$sum来计算总和。因为MongoDB的文档有数组字段,所以可以简单的将计算总和分成两种:

1,统计符合条件的所有文档的某个字段的总和;

2,统计每个文档的数组字段里面的各个数据值的和。这两种情况都可以通过$sum表达式来完成。

以上两种情况的聚合统计,分别对应与聚合框架中的 $group 操作步骤和 $project 操作步骤。

1.$group

直接看例子吧。

Case 1

测试集合mycol中的数据如下:

{
 title: 'MongoDB Overview', 
 description: 'MongoDB is no sql database',
 by_user: 'runoob.com',
 url: 'http://www.runoob.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 100
},
{
 title: 'NoSQL Overview', 
 description: 'No sql database is very fast',
 by_user: 'runoob.com',
 url: 'http://www.runoob.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 10
},
{
 title: 'Neo4j Overview', 
 description: 'Neo4j is no sql database',
 by_user: 'Neo4j',
 url: 'http://www.neo4j.com',
 tags: ['neo4j', 'database', 'NoSQL'],
 likes: 750
}

现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算

db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])

查询结果如下:

/* 1 */
{
 "_id" : "Neo4j",
 "num_tutorial" : 1
},

/* 2 */
{
 "_id" : "runoob.com",
 "num_tutorial" : 2
}

Case 2

统计每个作者被like的总和,计算表达式:

db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])

查询结果如下;

/* 1 */
{
 "_id" : "Neo4j",
 "num_tutorial" : 750
},

/* 2 */
{
 "_id" : "runoob.com",
 "num_tutorial" : 110
}

Case 3

上面例子有些简单,我们再丰富一下,测试集合sales的数据如下:

{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") }
{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") }
{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") }
{ "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") }
{ "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }

需要完成的目标是,基于日期分组,统计每天的销售额,聚合公式为:

db.sales.aggregate(
 [
  {
  $group:
   {
   _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } },
   totalAmount: { $sum: { $multiply: [ "$price", "$quantity" ] } },
   count: { $sum: 1 }
   }
  }
 ]
)

查询结果是:

{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 150, "count" : 2 }
{ "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 45, "count" : 2 }
{ "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 20, "count" : 1 }

2.$project阶段

Case 4

假设存在一个 students 集合,其数据结构如下:

{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 }
{ "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 }
{ "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }

现在的需求是统计每个学生的 平常的测验分数总和、实验分数总和、期末其中分数总和。

db.students.aggregate([
 {
  $project: {
  quizTotal: { $sum: "$quizzes"},
  labTotal: { $sum: "$labs" },
  examTotal: { $sum: [ "$final", "$midterm" ] }
  }
 }
])

其查询输出结果如下:

{ "_id" : 1, "quizTotal" : 23, "labTotal" : 13, "examTotal" : 155 }
{ "_id" : 2, "quizTotal" : 19, "labTotal" : 16, "examTotal" : 175 }
{ "_id" : 3, "quizTotal" : 14, "labTotal" : 11, "examTotal" : 148 }

参考文献:

https://www.runoob.com/mongodb/mongodb-aggregate.html

https://docs.mongodb.com/manual/reference/operator/aggregation/sum/index.html

总结

以上所述是小编给大家介绍的MongoDB 中聚合统计计算--$SUM表达式,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

标签:
MongoDB,聚合统计计算,MongoDB,$SUM表达式

幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。