幽灵资源网 Design By www.bzswh.com
Softmax回归函数是用于将分类结果归一化。但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况。
Softmax公式
Softmax实现方法1
import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and return softmax(x) x = np.array(x) x = np.exp(x) x.astype('float32') if x.ndim == 1: sumcol = sum(x) for i in range(x.size): x[i] = x[i]/float(sumcol) if x.ndim > 1: sumcol = x.sum(axis = 0) for row in x: for i in range(row.size): row[i] = row[i]/float(sumcol[i]) return x #测试结果 scores = [3.0,1.0, 0.2] print softmax(scores)
其计算结果如下:
[ 0.8360188 0.11314284 0.05083836]
Softmax实现方法2
import numpy as np def softmax(x): return np.exp(x)/np.sum(np.exp(x),axis=0) #测试结果 scores = [3.0,1.0, 0.2] print softmax(scores)
以上这篇Python下的Softmax回归函数的实现方法(推荐)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
softmax回归,python
幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。