幽灵资源网 Design By www.bzswh.com

本文实例为大家分享了python实现ID3决策树算法的具体代码,供大家参考,具体内容如下

''''' 
Created on Jan 30, 2015 
 
@author: 史帅 
''' 
 
from math import log 
import operator 
import re 
 
def fileToDataSet(fileName): 
  ''''' 
  此方法功能是:从文件中读取样本集数据,样本数据的格式为:数据以空白字符分割,最后一列为类标签 
     
    参数: 
      fileName:存放样本集数据的文件路径 
     
    返回值: 
      dataSet:样本集数据组成的二维数组 
  ''' 
  file=open(fileName, mode='r') 
  lines=file.readlines() 
  dataSet=[] 
  index=0 
  p=re.compile(r"\s+") 
  for line in lines: 
    line=p.split(line.strip()) 
    dataSet.append(line) 
    index+=1 
  return dataSet 
 
def calculateShannonEntropy(dataSet): 
  ''''' 
  此方法功能是:计算样本集数据类别的信息熵,样本数据的格式为二维数组 
     
    参数: 
      dataSet:样本集数据组成的二维数组 
     
    返回值: 
      shannonEntropy:样本集数据类别的信息熵 
  ''' 
  dataCount=len(dataSet) 
  classCountDic={} 
  for data in dataSet: 
    label=data[-1] 
    if label not in classCountDic.keys(): 
      classCountDic[label]=0 
    classCountDic[label]+=1 
  shannonEntropy=0.0 
  for key in classCountDic: 
    prob=float(classCountDic[key])/dataCount 
    shannonEntropy-=prob*log(prob,2) 
  return shannonEntropy 
 
def splitDataSet(dataSet,axis,value): 
  ''''' 
  此方法功能是:对样本集数据按照某一特征进行分割,使得分割后的数据集中该特征的值全部等于同一个值,并且将分割后的数据中该特征列去除 
   
    参数: 
      dataSet:待分割的样本集数据,二维数组 
      axis:特征所在样本集数据列中的位置 
      value:样本集数据分割后该特征的值 
       
    返回值: 
      splitedDataSet:按照所在位置为axis的特征进行分割,并且该特征值为value的样本集数据的子集 
  ''' 
  splitedDataSet=[] 
  for data in dataSet: 
    if data[axis]==value: 
      splitedData=data[:axis] 
      splitedData.extend(data[axis+1:]) 
      splitedDataSet.append(splitedData) 
  return splitedDataSet 
 
def chooseBestFeatureToSlipt(dataSet): 
  ''''' 
  此方法功能是:分别计算整个样本集数据的信息熵与按照各个特征分割后的数据集的信息熵之差,得到使差值最大的分割方案,得到该分割方案的特征 
   
    参数: 
      dataSet:待分割的样本集数据,二维数组 
       
    返回值: 
      bestFeature:按照分割前后信息熵差值最大的分割方案得到的特征,返回此特征所在样本集数据列中的位置 
  ''' 
  bestFeature=-1 
  dataSetShannonEntropy=calculateShannonEntropy(dataSet) 
  infoGain=0 
  featureCount=len(dataSet[0])-1 
  for i in range(featureCount): 
    featureList=[example[i] for example in dataSet] 
    featureSet=set(featureList) 
    splitedDataSetShannonEntropy=0 
    for feature in featureSet: 
      splitedDataSet=splitDataSet(dataSet,i,feature) 
      splitedDataSetShannonEntropy+=float(len(splitedDataSet))/len(dataSet)*calculateShannonEntropy(splitedDataSet) 
    if dataSetShannonEntropy-splitedDataSetShannonEntropy>infoGain: 
      infoGain=dataSetShannonEntropy-splitedDataSetShannonEntropy 
      bestFeature=i 
  return bestFeature 
 
def majorityClass(classList): 
  ''''' 
  此方法功能是:从类别列表中得到个数最多的类别 
   
    参数: 
      classList:类别列表,一维数组 
       
    返回值: 
      类别列表中个数最多的类别 
  ''' 
  classCountDic={} 
  for label in classList: 
    if label not in classCountDic.keys(): 
      classCountDic[label]=0 
    classCountDic[label]+=1 
  classCountDic=sorted(classCountDic.item(),key=operator.itemgetter(1),reverse=True) 
  return classCountDic[0][0] 
 
 
def createTree(dataSet,features): 
  ''''' 
  此方法功能是:根据训练样本集数据创建对分类最有效的决策树 
   
    参数: 
      dataSet:训练样本集数据,二维数组 
      features:与训练样本集数据中各列的特征值相对应的特征名称集合,一维数组 
     
    返回值: 
      tree:根据训练样本集数据所创建的,对分类最有效的决策树 
  ''' 
  subFeatures=features[:] 
  classList=[example[-1] for example in dataSet] 
  if classList.count(classList[0])==len(classList): 
    return classList[0] 
  if len(dataSet[0])==1: 
    return majorityClass(classList) 
  bestFeature=chooseBestFeatureToSlipt(dataSet) 
  label=subFeatures[bestFeature] 
  tree={label:{}} 
  del(subFeatures[bestFeature]) 
  featureList=[example[bestFeature] for example in dataSet] 
  featureSet=set(featureList) 
  for feature in featureSet: 
    splitedDataSet=splitDataSet(dataSet,bestFeature,feature) 
    tree[label][feature]=createTree(splitedDataSet, subFeatures) 
  return tree 
   
def classify(inX,tree,features): 
  ''''' 
  此方法功能是:根据创建好的决策树,对特定的数据进行分类 
   
    参数: 
      inX:待分类的数据,特征值向量,一维数组 
      tree:根据决策树算法创建好的最有效的决策树 
      features:与训练样本集数据中各列的特征值相对应的特征名称集合,一维数组 
       
    返回值: 
      label:待分类的数据通过决策树分类之后的类别 
  ''' 
  feature=list(tree.keys())[0] 
  featureIndex=features.index(feature) 
  secondTree=tree[feature][inX[featureIndex]] 
  if type(secondTree).__name__=="dict": 
    label=classify(inX,secondTree,features) 
  else: 
    label=secondTree 
  return label 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,ID3,决策树

幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。