1.梯度下降
1)什么是梯度下降?
因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降。
简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方。但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点。如图所示,黑线标注的路线所指的方向并不是真正的地方。
既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走?
先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因。
如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点。
总结起来就一句话:随机选择一个方向,然后每次迈步都选择最陡的方向,直到这个方向上能达到的最低点。
2)梯度下降是用来做什么的"font-size: large">2.梯度下降的变形形式
根据处理的训练数据的不同,主要有以下三种形式:
1)批量梯度下降法BGD(BatchGradientDescent):
针对的是整个数据集,通过对所有的样本的计算来求解梯度的方向。
优点:全局最优解;易于并行实现;
缺点:当样本数据很多时,计算量开销大,计算速度慢
2)小批量梯度下降法MBGD(mini-batchGradientDescent)
把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性
优点:减少了计算的开销量,降低了随机性
3)随机梯度下降法SGD(stochasticgradientdescent)
每个数据都计算算一下损失函数,然后求梯度更新参数。
优点:计算速度快
缺点:收敛性能不好
总结:SGD可以看作是MBGD的一个特例,及batch_size=1的情况。在深度学习及机器学习中,基本上都是使用的MBGD算法。
3.随机梯度下降
随机梯度下降(SGD)是一种简单但非常有效的方法,多用用于支持向量机、逻辑回归等凸损失函数下的线性分类器的学习。并且SGD已成功应用于文本分类和自然语言处理中经常遇到的大规模和稀疏机器学习问题。
SGD既可以用于分类计算,也可以用于回归计算。
1)分类
a)核心函数
sklearn.linear_model.SGDClassifier
b)主要参数(详细参数)
loss:指定损失函数。可选值:‘hinge'(默认),‘log',‘modified_huber',‘squared_hinge',‘perceptron',
"hinge":线性SVM
"log":逻辑回归
"modified_huber":平滑损失,基于异常值容忍和概率估计
"squared_hinge":带有二次惩罚的线性SVM
"perceptron":带有线性损失的感知器
alpha:惩罚系数
c)示例代码及详细解释
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs ##生产数据 X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) ##训练数据 clf = SGDClassifier(loss="hinge", alpha=0.01) clf.fit(X, Y) ## 绘图 xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) ##生成二维矩阵 X1, X2 = np.meshgrid(xx, yy) ##生产一个与X1相同形状的矩阵 Z = np.empty(X1.shape) ##np.ndenumerate 返回矩阵中每个数的值及其索引 for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([[x1, x2]]) ##样本到超平面的距离 Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' ##绘制等高线:Z分别等于levels plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) ##画数据点 plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolor='black', s=20) plt.axis('tight') plt.show()
d)结果图
2)回归
SGDRegressor非常适合回归问题具有大量训练样本(>10000),对于其他的问题,建议使用的Ridge,Lasso或ElasticNet。
a)核心函数
sklearn.linear_model.SGDRegressor
b)主要参数(详细参数)
loss:指定损失函数。可选值‘squared_loss'(默认),‘huber',‘epsilon_insensitive',‘squared_epsilon_insensitive'
说明:此参数的翻译不是特别准确,请参考官方文档。
"squared_loss":采用普通最小二乘法
"huber":使用改进的普通最小二乘法,修正异常值
"epsilon_insensitive":忽略小于epsilon的错误
"squared_epsilon_insensitive":
alpha:惩罚系数
c)示例代码
因为使用方式与其他线性回归方式类似,所以这里只举个简单的例子:
import numpy as np from sklearn import linear_model n_samples, n_features = 10, 5 np.random.seed(0) y = np.random.randn(n_samples) X = np.random.randn(n_samples, n_features) clf = linear_model.SGDRegressor() clf.fit(X, y)
总结
以上就是本文关于Python语言描述随机梯度下降法的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。