幽灵资源网 Design By www.bzswh.com
本文实例为大家分享了tensorflow实现弹性网络回归算法,供大家参考,具体内容如下
python代码:
#用tensorflow实现弹性网络算法(多变量) #使用鸢尾花数据集,后三个特征作为特征,用来预测第一个特征。 #1 导入必要的编程库,创建计算图,加载数据集 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasets from tensorflow.python.framework import ops ops.get_default_graph() sess = tf.Session() iris = datasets.load_iris() x_vals = np.array([[x[1], x[2], x[3]] for x in iris.data]) y_vals = np.array([y[0] for y in iris.data]) #2 声明学习率,批量大小,占位符和模型变量,模型输出 learning_rate = 0.001 batch_size = 50 x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32) #占位符大小为3 y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) A = tf.Variable(tf.random_normal(shape=[3,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) model_output = tf.add(tf.matmul(x_data, A), b) #3 对于弹性网络回归算法,损失函数包括L1正则和L2正则 elastic_param1 = tf.constant(1.) elastic_param2 = tf.constant(1.) l1_a_loss = tf.reduce_mean(abs(A)) l2_a_loss = tf.reduce_mean(tf.square(A)) e1_term = tf.multiply(elastic_param1, l1_a_loss) e2_term = tf.multiply(elastic_param2, l2_a_loss) loss = tf.expand_dims(tf.add(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), e1_term), e2_term), 0) #4 初始化变量, 声明优化器, 然后遍历迭代运行, 训练拟合得到参数 init = tf.global_variables_initializer() sess.run(init) my_opt = tf.train.GradientDescentOptimizer(learning_rate) train_step = my_opt.minimize(loss) loss_vec = [] for i in range(1000): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = x_vals[rand_index] rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data:rand_x, y_target:rand_y}) temp_loss = sess.run(loss, feed_dict={x_data:rand_x, y_target:rand_y}) loss_vec.append(temp_loss) if (i+1)%250 == 0: print('Step#' + str(i+1) +'A = ' + str(sess.run(A)) + 'b=' + str(sess.run(b))) print('Loss= ' +str(temp_loss)) #现在能观察到, 随着训练迭代后损失函数已收敛。 plt.plot(loss_vec, 'k--') plt.title('Loss per Generation') plt.xlabel('Generation') plt.ylabel('Loss') plt.show()
本文参考书《Tensorflow机器学习实战指南》
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。