幽灵资源网 Design By www.bzswh.com
演示结果:
完整代码:
import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib._png import read_png import matplotlib.colors from matplotlib.cbook import get_sample_data class RibbonBox(object): original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png", asfileobj=False)) cut_location = 70 b_and_h = original_image[:, :, 2] color = original_image[:, :, 2] - original_image[:, :, 0] alpha = original_image[:, :, 3] nx = original_image.shape[1] def __init__(self, color): rgb = matplotlib.colors.to_rgba(color)[:3] im = np.empty(self.original_image.shape, self.original_image.dtype) im[:, :, :3] = self.b_and_h[:, :, np.newaxis] im[:, :, :3] -= self.color[:, :, np.newaxis]*(1. - np.array(rgb)) im[:, :, 3] = self.alpha self.im = im def get_stretched_image(self, stretch_factor): stretch_factor = max(stretch_factor, 1) ny, nx, nch = self.im.shape ny2 = int(ny*stretch_factor) stretched_image = np.empty((ny2, nx, nch), self.im.dtype) cut = self.im[self.cut_location, :, :] stretched_image[:, :, :] = cut stretched_image[:self.cut_location, :, :] = self.im[:self.cut_location, :, :] stretched_image[-(ny - self.cut_location):, :, :] = self.im[-(ny - self.cut_location):, :, :] self._cached_im = stretched_image return stretched_image class RibbonBoxImage(BboxImage): zorder = 1 def __init__(self, bbox, color, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, **kwargs ): BboxImage.__init__(self, bbox, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._ribbonbox = RibbonBox(color) self._cached_ny = None def draw(self, renderer, *args, **kwargs): bbox = self.get_window_extent(renderer) stretch_factor = bbox.height / bbox.width ny = int(stretch_factor*self._ribbonbox.nx) if self._cached_ny != ny: arr = self._ribbonbox.get_stretched_image(stretch_factor) self.set_array(arr) self._cached_ny = ny BboxImage.draw(self, renderer, *args, **kwargs) if 1: from matplotlib.transforms import Bbox, TransformedBbox from matplotlib.ticker import ScalarFormatter # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() years = np.arange(2004, 2009) box_colors = [(0.8, 0.2, 0.2), (0.2, 0.8, 0.2), (0.2, 0.2, 0.8), (0.7, 0.5, 0.8), (0.3, 0.8, 0.7), ] heights = np.random.random(years.shape) * 7000 + 3000 fmt = ScalarFormatter(useOffset=False) ax.xaxis.set_major_formatter(fmt) for year, h, bc in zip(years, heights, box_colors): bbox0 = Bbox.from_extents(year - 0.4, 0., year + 0.4, h) bbox = TransformedBbox(bbox0, ax.transData) rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic") ax.add_artist(rb_patch) ax.annotate(r"%d" % (int(h/100.)*100), (year, h), va="bottom", ha="center") patch_gradient = BboxImage(ax.bbox, interpolation="bicubic", zorder=0.1, ) gradient = np.zeros((2, 2, 4), dtype=float) gradient[:, :, :3] = [1, 1, 0.] gradient[:, :, 3] = [[0.1, 0.3], [0.3, 0.5]] # alpha channel patch_gradient.set_array(gradient) ax.add_artist(patch_gradient) ax.set_xlim(years[0] - 0.5, years[-1] + 0.5) ax.set_ylim(0, 10000) fig.savefig('ribbon_box.png') plt.show()
总结
以上就是本文关于python+matplotlib实现礼盒柱状图实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。