本文实例讲述了Python模拟随机游走图形效果。分享给大家供大家参考,具体如下:
在python中,可以利用数组操作来模拟随机游走。
下面是一个单一的200步随机游走的例子,从0开始,步长为1和-1,且以相等的概率出现。纯Python方式实现,使用了内建的 random 模块:
# 随机游走 import matplotlib.pyplot as plt import random position = 0 walk = [position] steps = 200 for i in range(steps): step = 1 if random.randint(0, 1) else -1 position += step walk.append(position) fig = plt.figure() plt.title("www.jb51.net") ax = fig.add_subplot(111) ax.plot(walk) plt.show()
第二种方式:简单的把随机步长累积起来并且可以可以使用一个数组表达式来计算。因此,我用 np.random 模块去200次硬币翻转,设置它们为1和-1,并计算累计和:
# 随机游走 import matplotlib.pyplot as plt import numpy as np nsteps = 200 draws = np.random.randint(0, 2, size=nsteps) steps = np.where(draws > 0, 1, -1) walk = steps.cumsum() fig = plt.figure() plt.title("www.jb51.net") ax = fig.add_subplot(111) ax.plot(walk) plt.show()
一次模拟多个随机游走
# 随机游走 import matplotlib.pyplot as plt import numpy as np nwalks = 5 nsteps = 200 draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1 steps = np.where(draws > 0, 1, -1) walks = steps.cumsum(1) fig = plt.figure() plt.title("www.jb51.net") ax = fig.add_subplot(111) for i in range(nwalks): ax.plot(walks[i]) plt.show()
当然,还可以大胆的试验其它的分布的步长,而不是相等大小的硬币翻转。你只需要使用一个不同的随机数生成函数,如 normal 来产生相同均值和标准偏差的正态分布:
steps = np.random.normal(loc=0, scale=0.25, size=(nwalks, nsteps))
更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。