本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下
标准化
1、离差标准化
是对原始数据的线性变换,使结果映射到[0,1]区间。方便数据的处理。消除单位影响及变异大小因素影响。
基本公式为:
x'=(x-min)/(max-min)
代码:
#!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np import pandas as pd import matplotlib.pylab as plt import mysql.connector conn = mysql.connector.connect(host='localhost', user='root', passwd='123456', db='python')#链接本地数据库 sql = 'select price,comment from taob'#sql语句 data = pd.read_sql(sql,conn)#获取数据 #离差标准化 data1 = (data-data.min())/(data.max()-data.min()) print(data1)
运行结果
2、标准差标准化
消除单位影响以及变量自身变异影响。(零-均值标准化)
基本公式为:
x'=(x-平均数)/标准差
python代码:
#!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np import pandas as pd import matplotlib.pylab as plt import mysql.connector conn = mysql.connector.connect(host='localhost', user='root', passwd='123456', db='python')#链接本地数据库 sql = 'select price,comment from taob'#sql语句 data = pd.read_sql(sql,conn)#获取数据 #标准差标准化 data1 = (data-data.mean())/data.std() print(data1)
运行结果:
3、小数定标标准化
消除单位影响
基本公式为:
其中j=lg(max(|x|)),即以10为底的x的绝对值最大的对数
x' = x/10^j
实现代码为:
#!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np import pandas as pd import matplotlib.pylab as plt import mysql.connector conn = mysql.connector.connect(host='localhost', user='root', passwd='123456', db='python')#链接本地数据库 sql = 'select price,comment from taob'#sql语句 data = pd.read_sql(sql,conn)#获取数据 #标准差标准化 j = np.ceil(np.log10(data.abs().max()))#进一取整,abs()为取绝对值 data1 = data/10**j print(data1)
结果:
离散化
离散化是程序设计中一个常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中,只考虑需要用的值。离散化可以改进一个低效的算法,甚至实现根本不可能实现的算法
1、等宽离散化
将连续数据按照等宽区间标准离散化数据,好处之一是处理的数据是有限个数据而不是无限多。
使用pandas的cut方法。非等宽只需要更改cut的第二个参数,例如:第二个参数为[1,100,3000,10000,200000],即划分为了四个区间。
#!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np import pandas as pd import matplotlib.pylab as plt import mysql.connector conn = mysql.connector.connect(host='localhost', user='root', passwd='123456', db='python')#链接本地数据库 sql = 'select price,comment from taob'#sql语句 data = pd.read_sql(sql,conn)#获取数据 #离散化 data1 = data['price'].T.values#获取价格的一维数组 lable=['很低','低','中','高','很高'] data2 = pd.cut(data1,5,labels=lable) print(data2)
执行结果:
2、等频率离散化
将相同数量的数据放进一个区间。
3、一维聚类离散化
按属性对数据进行聚类离散。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。