幽灵资源网 Design By www.bzswh.com

python实现简单神经网络算法,供大家参考,具体内容如下

python实现二层神经网络

包括输入层和输出层

import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 
import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 

这里,
l0:输入层

l1:输出层

syn0:初始权值

l1_error:误差

l1_delta:误差校正系数

func nonlin:sigmoid函数

python实现简单神经网络算法

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 
import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,神经网络

幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。