幽灵资源网 Design By www.bzswh.com
尽管我们可以将所有的NaN替换成0,但是由于并不知道这些值的意义,所以这样做是个下策。如果它们是开氏温度,那么将它们置成0这种处理策略就太差劲了。
下面我们用平均值来代替缺失值,平均值根据那些非NaN得到。
from numpy import * datMat = mat([[1,2,3],[4,Nan,6]]) numFeat = shape(datMat)[1] for i in range(numFeat): meanVal = mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i]) #values that are not NaN (a number) datMat[nonzero(isnan(datMat[:,i].A))[0],i] = meanVal #set NaN values to mean
以上这篇numpy 对矩阵中Nan的处理:采用平均值的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
numpy,矩阵,Nan,平均值
幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com
暂无评论...