幽灵资源网 Design By www.bzswh.com

前言

还有一年多就要毕业了,不准备考研的我要着手准备找实习及工作了,所以一直没有更新。

因为Python是自学不久,发现很久不用的话以前学过的很多方法就忘了,今天打算使用简单的BeautifulSoup和一点正则表达式的方法来爬一下top100电影,当然,我们并不仅是使用爬虫爬取数据,这样的话,数据中存在很多的对人有用的信息则被忽略了。所以,爬取数据只是开头,对这些数据根据意愿进行分析,或许能有额外的收获。

注:本人还是Python菜鸟,若有错误欢迎指正

本次我们爬取时光网(http://www.mtime.com/top/movie/top100/)上的电影排名,该网站网页结构较简单,爬取方便。

步骤:

1.爬取时光网top100电影,华语top100电影,日本top100电影,韩国top100电影的排名情况,电影名字,电影简介,评分及评价人数    

2. 将爬取数据保存为csv格式后,取出并使用matplotlib绘图库分析对比评论人数一项   

3.将结果图像保存

步骤一:爬取

python使用BeautifulSoup与正则表达式爬取时光网不同地区top100电影并对比

由上图可知电影信息在 li 节点内,而且发现第一页与后面网页地址不同,需要进行判断。

第一页地址为:http://www.mtime.com/top/movie/top100/

第二页地址为:http://www.mtime.com/top/movie/top100/index-2.html

第三页及后面地址均与第二页相似,仅网址的数字相应增加,所以更改数字即可爬取

import requests
from bs4 import BeautifulSoup
import re
import csv

#定义爬取函数
def get_infos(htmls, csvname):
 #信息头
 headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36'
 }
 #flag在写入文件时判断是否为首行
 flag = True
 #判断第一页网址,第二页及其后的网址
 for i in range(10):
 if i == 0:
  html = htmls
 else:
  html = htmls + 'index-{}.html'.format(str(i+1))
 res = requests.get(html, headers=headers)
 soup = BeautifulSoup(res.text, 'lxml')
 alls = soup.select('#asyncRatingRegion > li') #选取网页的li节点的内容
 #对节点内容进行循环遍历
 for one in alls:
  paiming = one.div.em.string #排名
  names = str(one.select('div.mov_pic > a')) #电影名称并将列表字符串化
  name = re.findall('.*"(.*">.*">(.*"color: #800000">注:上述没有添加华语电影top100及所有电影top100的代码,可自行添加。

爬取结果部分内容如下:

python使用BeautifulSoup与正则表达式爬取时光网不同地区top100电影并对比

-----------------------------------------------------------------------------------------------------------------------------------------------------------------

步骤二和三:导入数据并使用matplotlib分析,保存分析图片

import csv
from matplotlib import pyplot as plt
#中文乱码处理
plt.rcParams['font.sans-serif'] =['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False

def read_csv(csvname):
 csvfile_name = 'C:\\Users\lenovo\Desktop\\' + csvname + '.csv'
 #打开文件并存入列表
 with open(csvfile_name,encoding='utf-8') as f:
 reader = csv.reader(f)
 header_row = next(reader)
 name = []
 for row in reader:
  name.append(row)
 #取列表中非空元素
 real = []
 for i in name:
 if len(i) != 0:
  real.append(i)
 #去除中文并将数据转换为整形
 t = 0
 ss = []
 for j in real:
 ss.append(int(real[t][4][:-5]))
 t += 1
 return ss

#绘制对比图形
All_plt = read_csv('bs1') #调用函数
China_plt = read_csv('China_top')
Japan_plt = read_csv('Japan_top')
Korea_plt = read_csv('Korea_top')
shu = list(range(1,101))
fig = plt.figure(dpi=128, figsize=(10, 6)) #设置图形界面
plt.subplot(2,1,1)
plt.bar(shu ,All_plt, align='center', color='green', label='World', alpha=0.6) #绘制条图形,align指定横坐标在中心,颜色,alpha指定透明度
plt.bar(shu ,China_plt, color='indigo', label='China', alpha=0.4) #绘制图形,颜色, label属性用于后面使用legend方法时显示图例标签
plt.bar(shu ,Japan_plt, color='blue', label='Japan',alpha=0.5) #绘制图形,颜色,
plt.bar(shu ,Korea_plt, color='yellow', label='Korea',alpha=0.5) #绘制图形,颜色,
plt.ylabel('评论数', fontsize=10) #纵坐标题目,字体大小
plt.title('不同地区的电影top100对比', fontsize=10) #图形标题
plt.legend(loc='best')

plt.subplot(2,1,2)
plt.plot(shu , All_plt, linewidth=1, c='green', label='World') #绘制图形,指定线宽,颜色,label属性用于后面使用legend方法时显示图例标签
plt.plot(shu ,China_plt, linewidth=1, c='indigo', label='China', ls='-.') #绘制图形,指定线宽,颜色,
plt.plot(shu ,Japan_plt, linewidth=1, c='green', label='Japan', ls='--') #绘制图形,指定线宽,颜色,
plt.plot(shu ,Korea_plt, linewidth=1, c='red', label='Korea', ls=':') #绘制图形,指定线宽,颜色,
plt.ylabel('comments', fontsize=10) #纵坐标题目,字体大小
plt.title('The different top 100 movies\'comments comparison', fontsize=10) #图形标题
plt.legend(loc='best')
'''
plt.legend()——loc参数选择
'best' : 0, #自动选择最好位置 
 'upper right' : 1,
 'upper left' : 2,
 'lower left' : 3,
 'lower right' : 4,
 'right' : 5,
 'center left' : 6,
 'center right' : 7,
 'lower center' : 8,
 'upper center' : 9,
 'center' : 10,
 '''
plt.savefig('C:\\Users\lenovo\Desktop\\bs1.png') #保存图片
plt.show() #显示图形

这里需要注意的是读取保存的csv文件并将数据传入列表时,每一个电影数据又是一个列表(先称为有效列表),每个有效列表前后都有一个空列表,所以需要将空列表删除,才能进行下一步

评分数据为string类型且有中文,所以进行遍历将中文去除并转换为int。

最后保存的对比分析图片:

python使用BeautifulSoup与正则表达式爬取时光网不同地区top100电影并对比

本次使用的爬取方法、爬取内容、分析内容都很容易,但我在完成过程中,发现自己还是会出现各种各样的问题,说明还有很多需要改善进步的地方。

同时欢迎大家指正。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

标签:
python,beautifulsoup,python爬取视频,python爬取网页数据

幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com