幽灵资源网 Design By www.bzswh.com

神经网络模型一般用来做分类,回归预测模型不常见,本文基于一个用来分类的BP神经网络,对它进行修改,实现了一个回归模型,用来做室内定位。模型主要变化是去掉了第三层的非线性转换,或者说把非线性激活函数Sigmoid换成f(x)=x函数。这样做的主要原因是Sigmoid函数的输出范围太小,在0-1之间,而回归模型的输出范围较大。模型修改如下:

python实现BP神经网络回归预测模型

python实现BP神经网络回归预测模型

代码如下:

#coding: utf8
''''
author: Huangyuliang
'''
import json
import random
import sys
import numpy as np
 
#### Define the quadratic and cross-entropy cost functions
class CrossEntropyCost(object):
 
  @staticmethod
  def fn(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
  @staticmethod
  def delta(z, a, y):
    return (a-y)
 
#### Main Network class
class Network(object):
 
  def __init__(self, sizes, cost=CrossEntropyCost):
 
    self.num_layers = len(sizes)
    self.sizes = sizes
    self.default_weight_initializer()
    self.cost=cost
 
  def default_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)/np.sqrt(x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def large_weight_initializer(self):
 
    self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
    self.weights = [np.random.randn(y, x)
            for x, y in zip(self.sizes[:-1], self.sizes[1:])]
  def feedforward(self, a):
    """Return the output of the network if ``a`` is input."""
    for b, w in zip(self.biases[:-1], self.weights[:-1]): # 前n-1层
      a = sigmoid(np.dot(w, a)+b)
 
    b = self.biases[-1]  # 最后一层
    w = self.weights[-1]
    a = np.dot(w, a)+b
    return a
 
  def SGD(self, training_data, epochs, mini_batch_size, eta,
      lmbda = 0.0,
      evaluation_data=None,
      monitor_evaluation_accuracy=False): # 用随机梯度下降算法进行训练
 
    n = len(training_data)
 
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)]
      
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta, lmbda, len(training_data))
      print ("Epoch %s training complete" % j)
      
      if monitor_evaluation_accuracy:
        print ("Accuracy on evaluation data: {} / {}".format(self.accuracy(evaluation_data), j))
     
  def update_mini_batch(self, mini_batch, eta, lmbda, n):
    """Update the network's weights and biases by applying gradient
    descent using backpropagation to a single mini batch. The
    ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the
    learning rate, ``lmbda`` is the regularization parameter, and
    ``n`` is the total size of the training data set.
    """
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini_batch:
      delta_nabla_b, delta_nabla_w = self.backprop(x, y)
      nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
      nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
    self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw
            for w, nw in zip(self.weights, nabla_w)]
    self.biases = [b-(eta/len(mini_batch))*nb
            for b, nb in zip(self.biases, nabla_b)]
 
  def backprop(self, x, y):
    """Return a tuple ``(nabla_b, nabla_w)`` representing the
    gradient for the cost function C_x. ``nabla_b`` and
    ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
    to ``self.biases`` and ``self.weights``."""
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # feedforward
    activation = x
    activations = [x] # list to store all the activations, layer by layer
    zs = [] # list to store all the z vectors, layer by layer
    for b, w in zip(self.biases[:-1], self.weights[:-1]):  # 正向传播 前n-1层
 
      z = np.dot(w, activation)+b
      zs.append(z)
      activation = sigmoid(z)
      activations.append(activation)
# 最后一层,不用非线性
    b = self.biases[-1]
    w = self.weights[-1]
    z = np.dot(w, activation)+b
    zs.append(z)
    activation = z
    activations.append(activation)
    # backward pass 反向传播
    delta = (self.cost).delta(zs[-1], activations[-1], y)  # 误差 Tj - Oj 
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # (Tj - Oj) * O(j-1)
 
    for l in xrange(2, self.num_layers):
      z = zs[-l]  # w*a + b
      sp = sigmoid_prime(z) # z * (1-z)
      delta = np.dot(self.weights[-l+1].transpose(), delta) * sp # z*(1-z)*(Err*w) 隐藏层误差
      nabla_b[-l] = delta
      nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) # Errj * Oi
    return (nabla_b, nabla_w)
 
  def accuracy(self, data):
 
    results = [(self.feedforward(x), y) for (x, y) in data] 
    alist=[np.sqrt((x[0][0]-y[0])**2+(x[1][0]-y[1])**2) for (x,y) in results]
 
    return np.mean(alist)
 
  def save(self, filename):
    """Save the neural network to the file ``filename``."""
    data = {"sizes": self.sizes,
        "weights": [w.tolist() for w in self.weights],
        "biases": [b.tolist() for b in self.biases],
        "cost": str(self.cost.__name__)}
    f = open(filename, "w")
    json.dump(data, f)
    f.close()
 
#### Loading a Network
def load(filename):
  """Load a neural network from the file ``filename``. Returns an
  instance of Network.
  """
  f = open(filename, "r")
  data = json.load(f)
  f.close()
  cost = getattr(sys.modules[__name__], data["cost"])
  net = Network(data["sizes"], cost=cost)
  net.weights = [np.array(w) for w in data["weights"]]
  net.biases = [np.array(b) for b in data["biases"]]
  return net
 
def sigmoid(z):
  """The sigmoid function.""" 
  return 1.0/(1.0+np.exp(-z))
 
def sigmoid_prime(z):
  """Derivative of the sigmoid function."""
  return sigmoid(z)*(1-sigmoid(z))

调用神经网络进行训练并保存参数:

#coding: utf8
import my_datas_loader_1
import network_0
 
training_data,test_data = my_datas_loader_1.load_data_wrapper()
#### 训练网络,保存训练好的参数
net = network_0.Network([14,100,2],cost = network_0.CrossEntropyCost)
net.large_weight_initializer()
net.SGD(training_data,1000,316,0.005,lmbda =0.1,evaluation_data=test_data,monitor_evaluation_accuracy=True)
filename=r'C:\Users\hyl\Desktop\Second_158\Regression_Model\parameters.txt'
net.save(filename)

第190-199轮训练结果如下:

python实现BP神经网络回归预测模型

调用保存好的参数,进行定位预测:

#coding: utf8
import my_datas_loader_1
import network_0
import matplotlib.pyplot as plt
 
test_data = my_datas_loader_1.load_test_data()
#### 调用训练好的网络,用来进行预测
filename=r'D:\Workspase\Nerual_networks\parameters.txt'   ## 文件保存训练好的参数
net = network_0.load(filename)                ## 调用参数,形成网络
fig=plt.figure(1)
ax=fig.add_subplot(1,1,1)
ax.axis("equal") 
# plt.grid(color='b' , linewidth='0.5' ,linestyle='-')    # 添加网格
x=[-0.3,-0.3,-17.1,-17.1,-0.3]                ## 这是九楼地形的轮廓
y=[-0.3,26.4,26.4,-0.3,-0.3]
m=[1.5,1.5,-18.9,-18.9,1.5]
n=[-2.1,28.2,28.2,-2.1,-2.1]
ax.plot(x,y,m,n,c='k')
 
for i in range(len(test_data)):  
  pre = net.feedforward(test_data[i][0]) # pre 是预测出的坐标    
  bx=pre[0]
  by=pre[1]          
  ax.scatter(bx,by,s=4,lw=2,marker='.',alpha=1) #散点图  
  plt.pause(0.001)
plt.show() 

定位精度达到了1.5米左右。定位效果如下图所示:

python实现BP神经网络回归预测模型

真实路径为行人从原点绕环形走廊一圈。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,BP神经网络回归预测模型,bp神经网络python

幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?